Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: covidwho-20244201

ABSTRACT

Millions of SARS-CoV-2 whole genome sequences have been generated to date. However, good quality data and adequate surveillance systems are required to contribute to meaningful surveillance in public health. In this context, the network of Spanish laboratories for coronavirus (RELECOV) was created with the main goal of promoting actions to speed up the detection, analyses, and evaluation of SARS-CoV-2 at a national level, partially structured and financed by an ECDC-HERA-Incubator action (ECDC/GRANT/2021/024). A SARS-CoV-2 sequencing quality control assessment (QCA) was developed to evaluate the network's technical capacity. QCA full panel results showed a lower hit rate for lineage assignment compared to that obtained for variants. Genomic data comprising 48,578 viral genomes were studied and evaluated to monitor SARS-CoV-2. The developed network actions showed a 36% increase in sharing viral sequences. In addition, analysis of lineage/sublineage-defining mutations to track the virus showed characteristic mutation profiles for the Delta and Omicron variants. Further, phylogenetic analyses strongly correlated with different variant clusters, obtaining a robust reference tree. The RELECOV network has made it possible to improve and enhance the genomic surveillance of SARS-CoV-2 in Spain. It has provided and evaluated genomic tools for viral genome monitoring and characterization that make it possible to increase knowledge efficiently and quickly, promoting the genomic surveillance of SARS-CoV-2 in Spain.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spain/epidemiology , Phylogeny , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , Genomics , Mutation
2.
JMIR Public Health Surveill ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2198084

ABSTRACT

BACKGROUND: Rapid diagnostic tests (RDTs) are being widely used to manage COVID-19 pandemic. However, many results remain unreported or unconfirmed altering a correct epidemiological surveillance. OBJECTIVE: To evaluate an artificial intelligence-based smartphone application, connected to a cloud web platform, to automatically and objectively read rapid diagnostic test (RDT) results and assess its impact on COVID-19 pandemic management. METHODS: Overall, 252 human sera were used to inoculate a total of 1,165 RDTs for training and validation purposes. We then conducted two field studies to assess the performance on real-world scenarios by testing 172 antibody RDTs at two nursing homes and 96 antigen RDTs at one hospital emergency department. RESULTS: Field studies demonstrated high levels of sensitivity (100%) and specificity (94.4%, CI 92.8-96.1%) for reading IgG band of COVID-19 antibodies RDTs compared to visual readings from health workers. Sensitivity of detecting IgM test bands was 100% and specificity was 95.8%, CI 94.3-97.3%. All COVID-19 antigen RDTs were correctly read by the app. CONCLUSIONS: The proposed reading system is automatic, reducing variability and uncertainty associated with RDTs interpretation and can be used to read different RDTs brands. The web platform serves as a real time epidemiological tracking tool and facilitates reporting of positive RDTs to relevant health authorities.

3.
Front Med (Lausanne) ; 9: 976759, 2022.
Article in English | MEDLINE | ID: covidwho-2142053

ABSTRACT

The development of lung fibrosis is a major concern in patients recovered from severe COVID-19 pneumonia. This study aimed to document the evolution of diffuse alveolar damage (DAD) to the fibrosing pattern and define the transcriptional programs involved. Morphological, immunohistochemical and transcriptional analysis were performed in lung samples obtained from autopsy of 33 severe COVID-19 patients (median illness duration: 36 days). Normal lung and idiopathic pulmonary fibrosis (IPF) were used for comparison. Twenty-seven patients with DAD and disease evolution of more than 2 weeks had fibrosis. Pathways and genes related with collagen biosynthesis and extracellular matrix (ECM) biosynthesis and degradation, myofibroblastic differentiation and epithelial to mesenchymal transition (EMT) were overexpressed in COVID-19. This pattern had similarities with that observed in IPF. By immunohistochemistry, pathological fibroblasts (pFBs), with CTHRC1 and SPARC expression, increased in areas of proliferative DAD and decreased in areas of mature fibrosis. Immunohistochemical analysis demonstrated constitutive expression of cadherin-11 in normal epithelial cells and a similar pattern of cadherin and catenin expression in epithelial cells from both normal and COVID-19 samples. Transcriptomic analysis revealed downregulation of the Hippo pathway, concordant with the observation of YAP overexpression in hyperplastic alveolar epithelial cells. Progression to fibrosis in severe COVID-19 is associated with overexpression of fibrogenic pathways and increased in CTHRC1- and SPARC-positive pFBs. Whereas the Hippo pathway seemed to be implicated in the response to epithelial cell damage, EMT was not a major process implicated in COVID-19 mediated lung fibrosis.

4.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1981056

ABSTRACT

Background The coronavirus disease 2019 (COVID-19) pandemic has been a worldwide stress test for health systems. 2 years have elapsed since the description of the first cases of pneumonia of unknown origin. This study quantifies the impact of COVID-19 in the screening program of chronic viral infections such as human papillomavirus (HPV), human immunodeficiency virus (HIV), and hepatitis C virus (HCV) along the six different pandemic waves in our population. Each wave had particular epidemiological, biological, or clinical patterns. Methods We analyzed the number of samples for screening of these viruses from March 2020 to February 2022, the new infections detected in the pandemic period compared to the previous year, the time elapsed between diagnosis and linking to treatment and follow-up of patients, and the percentage of late HIV diagnosis. Moreover, we used the origin of the samples as a marker for quantifying the restoration of activity in primary care. Results During the first pandemic year, the number of samples received was reduced by 26.7, 22.6, and 22.5% for molecular detection of HPV or serological HCV and HIV status respectively. The highest decrease was observed during the first wave with 70, 40, and 26.7% for HPV, HCV, and HIV. As expected, new diagnoses also decreased by 35.4, 58.2, and 40.5% for HPV, HCV, and HIV respectively during the first year of the pandemic. In the second year of the pandemic, the number of samples remained below pre-pandemic period levels for HCV (−3.6%) and HIV (−9.3%) but was slightly higher for HPV (8.0%). The new diagnoses in the second year of the pandemic were −16.1, −46.8, and −18.6% for HPV, HCV, and HIV respectively. Conclusions Undoubtedly, an important number of new HPV, HCV, and HIV infections were lost during the COVID-19 pandemic, and surveillance programs were disrupted as a consequence of collapse of the health system. It is a priority to reinforce these surveillance programs as soon as possible in order to detect undiagnosed cases before the associated morbidity-mortality increases. New pandemic waves could increase the risk of reversing the achievements made over the last few decades.

5.
Sens Actuators B Chem ; 369: 132217, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-1895440

ABSTRACT

The development of DNA-sensing platforms based on new synthetized Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures (AuNs), as a new pathway to develop a selective and sensitive methodology for SARS-CoV-2 detection is presented. A mixture of gold nanoparticles and gold nanotriangles have been synthetized to modify disposable electrodes that act as an enhanced nanostructured electrochemical surface for DNA probe immobilization. On the other hand, modified carbon nanodots prepared a la carte to contain Methylene Blue (MB-CDs) are used as electrochemical indicators of the hybridization event. These MB-CDs, due to their structure, are able to interact differently with double and single-stranded DNA molecules. Based on this strategy, target sequences of the SARS-CoV-2 virus have been detected in a straightforward way and rapidly with a detection limit of 2.00 aM. Moreover, this platform allows the detection of the SARS-CoV-2 sequence in the presence of other viruses, and also a single nucleotide polymorphism (SNPs). The developed approach has been tested directly on RNA obtained from nasopharyngeal samples from COVID-19 patients, avoiding any amplification process. The results agree well with those obtained by RT-qPCR or reverse transcription quantitative polymerase chain reaction technique.

6.
Arch Dis Child ; 107(11): 1051-1058, 2022 11.
Article in English | MEDLINE | ID: covidwho-1891766

ABSTRACT

OBJECTIVES: To evaluate the performance of oral saliva swab (OSS) reverse transcription PCR (RT-PCR) compared with RT-PCR and antigen rapid diagnostic test (Ag-RDT) on nasopharyngeal swabs (NPS) for SARS-CoV-2 in children. DESIGN: Cross-sectional multicentre diagnostic study. SETTING: Study nested in a prospective, observational cohort (EPICO-AEP) performed between February and March 2021 including 10 hospitals in Spain. PATIENTS: Children from 0 to 18 years with symptoms compatible with Covid-19 of ≤5 days of duration were included. Two NPS samples (Ag-RDT and RT-PCR) and one OSS sample for RT-PCR were collected. MAIN OUTCOME: Performance of Ag-RDT and RT-PCR on NPS and RT-PCR on OSS sample for SARS-CoV-2. RESULTS: 1174 children were included, aged 3.8 years (IQR 1.7-9.0); 73/1174 (6.2%) patients tested positive by at least one of the techniques. Sensitivity and specificity of OSS RT-PCR were 72.1% (95% CI 59.7 to 81.9) and 99.6% (95% CI 99 to 99.9), respectively, versus 61.8% (95% CI 49.1 to 73) and 99.9% (95% CI 99.4 to 100) for the Ag-RDT. Kappa index was 0.79 (95% CI 0.72 to 0.88) for OSS RT-PCR and 0.74 (95% CI 0.65 to 0.84) for Ag-RDT versus NPS RT-PCR. CONCLUSIONS: RT-PCR on the OSS sample is an accurate option for SARS-CoV-2 testing in children. A less intrusive technique for younger patients, who usually are tested frequently, might increase the number of patients tested.


Subject(s)
COVID-19 , Child , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19 Testing , Saliva , Reverse Transcription , Prospective Studies , Cross-Sectional Studies , Sensitivity and Specificity , Polymerase Chain Reaction
7.
Pathology ; 54(6): 738-745, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1882427

ABSTRACT

Severe cases of Coronavirus Disease 2019 (COVID-19) can present with multiple neurological symptoms. The available neuropathological studies have described different lesions; the most frequent was the presence of neuroinflammation and vascular-related lesions. The objective of this study was to report the neuropathological studies performed in a medical institution, with abundant long intensive care unit stays, and their associated clinical manifestations. This is a retrospective monocentric case series study based on the neuropathological reports of 13 autopsies with a wide range of illness duration (13-108 days). A neuroinflammatory score was calculated based on the quantification of CD8- and CD68-positive cells in representative areas of the central nervous system. This score was correlated afterwards with illness duration and parameters related to systemic inflammation. Widespread microglial and cytotoxic T-cell activation was found in all patients. There was no correlation between the neuroinflammatory score and the duration of the illness; nor with parameters of systemic inflammation such as the peak of IL-6 or the HScore (a parameter of systemic macrophage activation syndrome). Two patients had global hypoxic ischaemic damage and five patients had subacute infarcts. One patient had many more brain vascular microthrombi compared to the others and multiple subacute pituitary infarcts. SARS-CoV-2 RNA was not detected with qRT-PCR. The proportion of brain lesions in severe COVID-19 patients could be related to illness duration. In our series, with abundant long hospitalisation stays, neuroinflammation was present in all patients and was more prominent between day 34 and day 45 after onset of symptoms. Clinical correlation showed that two patients with the highest neuroinflammatory scores had severe encephalopathies that were not attributable to any other cause. The second most frequent lesions were related to vascular pathology.


Subject(s)
COVID-19 , Nervous System Diseases , COVID-19/complications , Humans , Infarction , Inflammation , Interleukin-6 , Nervous System Diseases/etiology , Nervous System Diseases/pathology , Retrospective Studies , SARS-CoV-2
8.
Talanta ; 247: 123542, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1852117

ABSTRACT

In this work we present a powerful, affordable, and portable biosensor to develop Point of care (POC) SARS-CoV-2 virus detection. It is constructed from a fast, low cost, portable and electronically automatized potentiostat that controls the potential applied to a disposable screen-printed electrochemical platform and the current response. The potentiostat was designed to get the best signal-to-noise ratio, a very simple user interface offering the possibility to be used by any device (computer, mobile phone or tablet), to have a small and portable size, and a cheap manufacturing cost. Furthermore, the device includes as main components, a data acquisition board, a controller board and a hybridization chamber with a final size of 10 × 8 × 4 cm. The device has been tested by detecting specific SARS-CoV-2 virus sequences, reaching a detection limit of 22.1 fM. Results agree well with those obtained using a conventional potentiostat, which validate the device and pave the way to the development of POC biosensors. In this sense, the device has finally applied to directly detect the presence of the virus in nasopharyngeal samples of COVID-19 patients and results confirm its utility for the rapid detection infected samples avoiding any amplification process.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , Humans , Nucleic Acid Hybridization , Point-of-Care Systems , SARS-CoV-2
10.
Arch Bronconeumol ; 58 Suppl 1: 3-5, 2022 04.
Article in English, Spanish | MEDLINE | ID: covidwho-1797171
11.
Mikrochim Acta ; 189(4): 171, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1777732

ABSTRACT

Gold nanotriangles (AuNTs) functionalized with dithiolated oligonucleotides have been employed to develop an amplification-free electrochemical biosensor for SARS-CoV-2 in patient samples. Gold nanotriangles, prepared through a seed-mediated growth method and exhaustively characterized by different techniques, serve as an improved electrochemical platform and for DNA probe immobilization. Azure A is used as an electrochemical indicator of the hybridization event. The biosensor detects either single stranded DNA or RNA sequences of SARS-CoV-2 of different lengths, with a low detection limit of 22.2 fM. In addition, it allows to detect point mutations in SARS-CoV-2 genome with the aim to detect more infective SARS-CoV-2 variants such as Alpha, Beta, Gamma, Delta, and Omicron. Results obtained with the biosensor in nasopharyngeal swab samples from COVID-19 patients show the possibility to clearly discriminate between non-infected and infected patient samples as well as patient samples with different viral load. Furthermore, the results correlate well with those obtained by the gold standard technique RT-qPCR, with the advantage of avoiding the amplification process and the need of sophisticated equipment.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nucleic Acid Hybridization , Oligonucleotides , SARS-CoV-2/genetics
12.
Analytica chimica acta ; 2022.
Article in English | EuropePMC | ID: covidwho-1755876

ABSTRACT

The COVID-19 pandemic has brought to light the need for fast and sensitive detection methods to prevent the spread of pathogens. The scientific community is making a great effort to design new molecular detection methods suitable for fast point-of-care applications. In this regard, a variety of approaches have been developed or optimized, including isothermal amplification of viral nucleic acids, CRISPR-mediated target recognition, and read-out systems based on nanomaterials. Herein, we present CASCADE (CRISPR/CAS-based Colorimetric nucleic Acid DEtection), a sensing system for fast and specific naked-eye detection of SARS-CoV-2 RNA. In this approach, viral RNA is recognized by the LwaCas13a CRISPR protein, which activates its collateral RNase activity. Upon target recognition, Cas13a cleaves ssRNA oligonucleotides conjugated to gold nanoparticles (AuNPs), thus inducing their colloidal aggregation, which can be easily visualized. After an exhaustive optimization of functionalized AuNPs, CASCADE can detect picomolar concentrations of SARS-CoV-2 RNA. This sensitivity is further increased to low femtomolar (3 fM) and even attomolar (40 aM) ranges when CASCADE is coupled to RPA or NASBA isothermal nucleic acid amplification, respectively. We finally demonstrate that CASCADE succeeds in detecting SARS-CoV-2 in clinical samples from nasopharyngeal swabs. In conclusion, CASCADE is a fast and versatile RNA biosensor that can be coupled to different isothermal nucleic acid amplification methods for naked-eye diagnosis of infectious diseases. Graphical Image 1

13.
Talanta ; 243: 123393, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1740208

ABSTRACT

We present a fast, reliable and easy to scale-up colorimetric sensor based on gold nanoparticles (AuNPs) to detect the sequences coding for the RdRp, E, and S proteins of SARS-CoV-2. The optimization of the system (so-called "the sensor") includes the evaluation of different sizes of nanoparticles, sequences of oligonucleotides and buffers. It is stable for months without any noticeable decrease in its activity, allowing the detection of SARS-CoV-2 sequences by the naked eye in 15 min. The efficiency and selectivity of detection, in terms of significative colorimetric changes in the solution upon target recognition, are qualitatively (visually) and quantitatively (absorbance measurements) assessed using synthetic samples and samples derived from infected cells and patients. Furthermore, an easy and affordable amplification approach is implemented to increase the system's sensitivity for detecting high and medium viral loads (≥103 - 104 viral RNA copies/µl) in patient samples. The whole process (amplification and detection) takes 2.5 h. Due to the ease of use, stability and minimum equipment requirements, the proposed approach can be a valuable tool for the detection of SARS-CoV-2 at facilities with limited resources.


Subject(s)
COVID-19 , Metal Nanoparticles , COVID-19/diagnosis , Colorimetry , Gold , Humans , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , SARS-CoV-2/genetics
14.
Eur J Clin Microbiol Infect Dis ; 41(2): 305-312, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1520373

ABSTRACT

The reverse transcriptase polymerase chain reaction (RT-PCR) continues to be the reference diagnostic method for the confirmation of COVID-19 cases; however, rapid antigen detection tests (RADT) have recently been developed. The purpose of the study is to assess the performance of rapid antigen-based COVID-19 testing in the context of hospital outbreaks. This was an observational, cross-sectional study. The study period was from October 2020 to January 2021. The "Panbio COVID-19 AG" RADT (Abbott) was performed and TaqPath COVID-19 test RT-PCR. The samples were obtained from hospitalised patients in suspected outbreak situations at the Ramón y Cajal Hospital. A hospital outbreak was defined as the presence of 3 or more epidemiologically linked cases. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the RADT were calculated using RT-PCR as a reference. A total of 17 hospital outbreaks were detected in 11 hospital units during the study period, in which 34 RT-PCR and RADT screenings were performed. We obtained 541 samples, which were analysed with RT-PCR and a further 541 analysed with RADT. Six RADT tests gave conflicting results with the RT-PCR, 5 of them with a negative RADT and positive RT-PCR and one with positive RADT and a negative RT-PCR. The sensitivity of the RADT was 83.3% (65.3-94.4%) and the specificity was 99.8% (98.9-100%). The PPV was 96.2% (80.4-99.9%) and the NPV was 99% (97.7-99.7%). The RADT shows good diagnostic performance in patients on non-COVID-19 hospital wards, in the context of an outbreak.


Subject(s)
Antigens, Viral/immunology , COVID-19 Serological Testing/methods , Diagnostic Tests, Routine/methods , Pandemics , Cross-Sectional Studies , Humans , Sensitivity and Specificity , Spain/epidemiology
15.
Front Cardiovasc Med ; 8: 748396, 2021.
Article in English | MEDLINE | ID: covidwho-1497032

ABSTRACT

The role of SARS-CoV-2 as a direct cause in the cardiac lesions in patients with severe COVID-19 remains to be established. Our objective is to report the pathological findings in cardiac samples of 30 patients who died after a prolonged hospital stay due to Sars-Cov-2 infection. We performed macroscopic, histological and immunohistochemical analysis of the hearts of 30 patients; and detected Sars-Cov-2 RNA by RT-PCR in the cardiac tissue samples. The median age of our cohort was 69.5 years and 76.6% were male. The median time between symptoms onset and death was 36.5 days. The main comorbidities were arterial hypertension (13 patients, 43.3%), dyslipidemia (11 patients, 36.7%), cardiovascular conditions (8 patients, 26.7%), and obesity (8 patients, 26.7%). Cardiovascular conditions included ischemic cardiopathy in 4 patients (13.3%), hypertrophic cardiomyopathy in 2 patients (6.7%) and valve replacement and chronic heart failure in one patient each (3.3%). At autopsy, the most frequent histopathological findings were coronary artery atherosclerosis (8 patients, 26.7%), left ventricular hypertrophy (4 patients, 13.3%), chronic epicardial inflammation (3 patients, 10%) and adipose metaplasia (2 patients, 6.7%). Two patients showed focal myocarditis, one due to invasive aspergillosis. One additional patient showed senile amyloidosis. Sars-Cov-2 RNA was detected in the heart of only one out of 30 patients, who had the shortest disease evolution of the series (9 days). However, no relevant cardiac histological alterations were identified. In present series, cardiac pathology was only modest in most patients with severe COVID-19. At present, the contribution of a direct effect of SARS-CoV-2 on cardiac lesions remains to be established.

16.
Int J Environ Res Public Health ; 18(6)2021 03 10.
Article in English | MEDLINE | ID: covidwho-1389361

ABSTRACT

This study aims to identify factors related with SARS-CoV-2 infection in physicians and internal residents during the SARS-CoV-2 pandemic at a tertiary hospital in Spain, through a cross- sectional descriptive perception study with analytical components through two questionnaires directed at professionals working at the Ramon y Cajal University Hospital between February and April 2020. In total, 167 professionals formed the study group, and 156 professionals comprised the comparison group. Seventy percent of the professionals perceived a shortage of personal protective equipment (PPE), while 40% perceived a shortage of hand sanitiser, although more than 70% said they used it properly. Soap was more available and had a higher percentage of correct use (73.6-79.5%) (p > 0.05). Hand hygiene was optimal in >70% of professionals according to all five WHO measurements. In the adjusted model (OR; CI95%), belonging to a high-risk specialty (4.45; 1.66-11.91) and the use of public transportation (3.27; 1.87-5.73) remained risk factors. Protective factors were changes of uniform (0.53; 0.32-0.90), sanitation of personal objects before the workday (0.55; 0.31-0.97), and the disinfection of shared material (0.34; 0.19-0.58). We cannot confirm that a shortage or misuse of PPE is a factor in the spread of SARS-CoV-2. Fears and assessments are similar in both groups, but we cannot causally relate them to the spread of infection. The perception of the area of risk is different in both groups, suggesting that more information and education for healthcare workers is needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Health Personnel , Humans , Pandemics , Personal Protective Equipment , Spain/epidemiology , Specialization
18.
Microorganisms ; 9(7)2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1323309

ABSTRACT

In December 2020, UK authorities warned of the rapid spread of a new SARS-CoV-2 variant, belonging to the B.1.1.7 lineage, known as the Alpha variant. This variant is characterized by 17 mutations and 3 deletions. The deletion 69-70 in the spike protein can be detected by commercial platforms, allowing its real-time spread to be known. From the last days of December 2020 and over 4 months, all respiratory samples with a positive result for SARS-CoV-2 from patients treated in primary care and the emergency department were screened to detect this variant based on the strategy S gene target failure (SGTF). The first cases were detected during week 53 (2020) and reached >90% of all cases during weeks 15-16 (2021). During this period, the B.1.1.7/SGTF variant spread at a rapid and constant replacement rate of around 30-36%. The probability of intensive care unit admission was twice higher among patients infected by the B.1.1.7/SGTF variant, but there were no differences in death rate. During the peak of the third pandemic wave, this variant was not the most prevalent, and it became dominant when this wave was declining. Our results confirm that the B.1.1.7/SGTF variant displaced other SARS-CoV-2 variants in our healthcare area in 4 months. This displacement has led to an increase in the burden of disease.

19.
Euro Surveill ; 26(18)2021 05.
Article in English | MEDLINE | ID: covidwho-1219630

ABSTRACT

Despite social distancing measures implemented in Madrid to prevent the propagation of SARS-CoV-2, a significant increase (57.1%; 28.5 to 38.5 cases/month) in cases of lymphogranuloma venereum was detected during the COVID-19 pandemic. This unusual scenario might have accelerated a shift in Chlamydia trachomatis (CT) epidemiology towards a higher proportion of L genotypes compared with non-L genotypes in CT-positive samples. Our data underscore the importance of surveillance of sexually transmitted infections during the pandemic, in particular among vulnerable populations.


Subject(s)
COVID-19 , Lymphogranuloma Venereum , Chlamydia trachomatis/genetics , Homosexuality, Male , Humans , Lymphogranuloma Venereum/diagnosis , Lymphogranuloma Venereum/epidemiology , Male , Pandemics , SARS-CoV-2 , Spain/epidemiology
20.
Thorax ; 76(10): 1044-1046, 2021 10.
Article in English | MEDLINE | ID: covidwho-1148174

ABSTRACT

Diffuse alveolar damage and thrombi are the most common lung histopathological lesions reported in patients with severe COVID-19. Although some studies have suggested increased pulmonary angiogenesis, the presence of vascular proliferation in COVID-19 lungs has not been well characterised. Glomeruloid-like microscopic foci and/or coalescent vascular proliferations measuring up to 2 cm were present in the lung of 14 out of 16 autopsied patients. These lesions expressed CD31, CD34 and vascular endothelial cadherin. Platelet-derived growth factor receptor-ß immunohistochemistry and dual immunostaining for CD34/smooth muscle actin demonstrated the presence of pericytes. These vascular alterations may contribute to the severe and refractory hypoxaemia that is common in patients with severe COVID-19.


Subject(s)
COVID-19 , Autopsy , Cell Proliferation , Humans , Lung , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL